3.827 \(\int \frac{(a+b x^2)^2 \sqrt{c+d x^2}}{(e x)^{7/2}} \, dx\)

Optimal. Leaf size=421 \[ \frac{2 \left (\sqrt{c}+\sqrt{d} x\right ) \sqrt{\frac{c+d x^2}{\left (\sqrt{c}+\sqrt{d} x\right )^2}} \left (a d (a d+10 b c)+b^2 c^2\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right ),\frac{1}{2}\right )}{5 c^{3/4} d^{3/4} e^{7/2} \sqrt{c+d x^2}}-\frac{2 a^2 \left (c+d x^2\right )^{3/2}}{5 c e (e x)^{5/2}}-\frac{4 \left (\sqrt{c}+\sqrt{d} x\right ) \sqrt{\frac{c+d x^2}{\left (\sqrt{c}+\sqrt{d} x\right )^2}} \left (a d (a d+10 b c)+b^2 c^2\right ) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )|\frac{1}{2}\right )}{5 c^{3/4} d^{3/4} e^{7/2} \sqrt{c+d x^2}}+\frac{2 (e x)^{3/2} \sqrt{c+d x^2} \left (a d (a d+10 b c)+b^2 c^2\right )}{5 c^2 e^5}+\frac{4 \sqrt{e x} \sqrt{c+d x^2} \left (a d (a d+10 b c)+b^2 c^2\right )}{5 c \sqrt{d} e^4 \left (\sqrt{c}+\sqrt{d} x\right )}-\frac{2 a \left (c+d x^2\right )^{3/2} (a d+10 b c)}{5 c^2 e^3 \sqrt{e x}} \]

[Out]

(2*(b^2*c^2 + a*d*(10*b*c + a*d))*(e*x)^(3/2)*Sqrt[c + d*x^2])/(5*c^2*e^5) + (4*(b^2*c^2 + a*d*(10*b*c + a*d))
*Sqrt[e*x]*Sqrt[c + d*x^2])/(5*c*Sqrt[d]*e^4*(Sqrt[c] + Sqrt[d]*x)) - (2*a^2*(c + d*x^2)^(3/2))/(5*c*e*(e*x)^(
5/2)) - (2*a*(10*b*c + a*d)*(c + d*x^2)^(3/2))/(5*c^2*e^3*Sqrt[e*x]) - (4*(b^2*c^2 + a*d*(10*b*c + a*d))*(Sqrt
[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2]*EllipticE[2*ArcTan[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqr
t[e])], 1/2])/(5*c^(3/4)*d^(3/4)*e^(7/2)*Sqrt[c + d*x^2]) + (2*(b^2*c^2 + a*d*(10*b*c + a*d))*(Sqrt[c] + Sqrt[
d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2]*EllipticF[2*ArcTan[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], 1/2
])/(5*c^(3/4)*d^(3/4)*e^(7/2)*Sqrt[c + d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.395567, antiderivative size = 421, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {462, 453, 279, 329, 305, 220, 1196} \[ -\frac{2 a^2 \left (c+d x^2\right )^{3/2}}{5 c e (e x)^{5/2}}+\frac{2 \left (\sqrt{c}+\sqrt{d} x\right ) \sqrt{\frac{c+d x^2}{\left (\sqrt{c}+\sqrt{d} x\right )^2}} \left (a d (a d+10 b c)+b^2 c^2\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )|\frac{1}{2}\right )}{5 c^{3/4} d^{3/4} e^{7/2} \sqrt{c+d x^2}}-\frac{4 \left (\sqrt{c}+\sqrt{d} x\right ) \sqrt{\frac{c+d x^2}{\left (\sqrt{c}+\sqrt{d} x\right )^2}} \left (a d (a d+10 b c)+b^2 c^2\right ) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )|\frac{1}{2}\right )}{5 c^{3/4} d^{3/4} e^{7/2} \sqrt{c+d x^2}}+\frac{2 (e x)^{3/2} \sqrt{c+d x^2} \left (a d (a d+10 b c)+b^2 c^2\right )}{5 c^2 e^5}+\frac{4 \sqrt{e x} \sqrt{c+d x^2} \left (a d (a d+10 b c)+b^2 c^2\right )}{5 c \sqrt{d} e^4 \left (\sqrt{c}+\sqrt{d} x\right )}-\frac{2 a \left (c+d x^2\right )^{3/2} (a d+10 b c)}{5 c^2 e^3 \sqrt{e x}} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x^2)^2*Sqrt[c + d*x^2])/(e*x)^(7/2),x]

[Out]

(2*(b^2*c^2 + a*d*(10*b*c + a*d))*(e*x)^(3/2)*Sqrt[c + d*x^2])/(5*c^2*e^5) + (4*(b^2*c^2 + a*d*(10*b*c + a*d))
*Sqrt[e*x]*Sqrt[c + d*x^2])/(5*c*Sqrt[d]*e^4*(Sqrt[c] + Sqrt[d]*x)) - (2*a^2*(c + d*x^2)^(3/2))/(5*c*e*(e*x)^(
5/2)) - (2*a*(10*b*c + a*d)*(c + d*x^2)^(3/2))/(5*c^2*e^3*Sqrt[e*x]) - (4*(b^2*c^2 + a*d*(10*b*c + a*d))*(Sqrt
[c] + Sqrt[d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2]*EllipticE[2*ArcTan[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqr
t[e])], 1/2])/(5*c^(3/4)*d^(3/4)*e^(7/2)*Sqrt[c + d*x^2]) + (2*(b^2*c^2 + a*d*(10*b*c + a*d))*(Sqrt[c] + Sqrt[
d]*x)*Sqrt[(c + d*x^2)/(Sqrt[c] + Sqrt[d]*x)^2]*EllipticF[2*ArcTan[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], 1/2
])/(5*c^(3/4)*d^(3/4)*e^(7/2)*Sqrt[c + d*x^2])

Rule 462

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[(c^2*(e*x)^(
m + 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*x^n)^p*Simp[b
*c^2*n*(p + 1) + c*(b*c - 2*a*d)*(m + 1) - a*(m + 1)*d^2*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && Ne
Q[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 279

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
n*p + 1)), x] + Dist[(a*n*p)/(m + n*p + 1), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^2 \sqrt{c+d x^2}}{(e x)^{7/2}} \, dx &=-\frac{2 a^2 \left (c+d x^2\right )^{3/2}}{5 c e (e x)^{5/2}}+\frac{2 \int \frac{\left (\frac{1}{2} a (10 b c+a d)+\frac{5}{2} b^2 c x^2\right ) \sqrt{c+d x^2}}{(e x)^{3/2}} \, dx}{5 c e^2}\\ &=-\frac{2 a^2 \left (c+d x^2\right )^{3/2}}{5 c e (e x)^{5/2}}-\frac{2 a (10 b c+a d) \left (c+d x^2\right )^{3/2}}{5 c^2 e^3 \sqrt{e x}}+\frac{\left (b^2 c^2+a d (10 b c+a d)\right ) \int \sqrt{e x} \sqrt{c+d x^2} \, dx}{c^2 e^4}\\ &=\frac{2 \left (b^2 c^2+a d (10 b c+a d)\right ) (e x)^{3/2} \sqrt{c+d x^2}}{5 c^2 e^5}-\frac{2 a^2 \left (c+d x^2\right )^{3/2}}{5 c e (e x)^{5/2}}-\frac{2 a (10 b c+a d) \left (c+d x^2\right )^{3/2}}{5 c^2 e^3 \sqrt{e x}}+\frac{\left (2 \left (b^2 c^2+a d (10 b c+a d)\right )\right ) \int \frac{\sqrt{e x}}{\sqrt{c+d x^2}} \, dx}{5 c e^4}\\ &=\frac{2 \left (b^2 c^2+a d (10 b c+a d)\right ) (e x)^{3/2} \sqrt{c+d x^2}}{5 c^2 e^5}-\frac{2 a^2 \left (c+d x^2\right )^{3/2}}{5 c e (e x)^{5/2}}-\frac{2 a (10 b c+a d) \left (c+d x^2\right )^{3/2}}{5 c^2 e^3 \sqrt{e x}}+\frac{\left (4 \left (b^2 c^2+a d (10 b c+a d)\right )\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{c+\frac{d x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{5 c e^5}\\ &=\frac{2 \left (b^2 c^2+a d (10 b c+a d)\right ) (e x)^{3/2} \sqrt{c+d x^2}}{5 c^2 e^5}-\frac{2 a^2 \left (c+d x^2\right )^{3/2}}{5 c e (e x)^{5/2}}-\frac{2 a (10 b c+a d) \left (c+d x^2\right )^{3/2}}{5 c^2 e^3 \sqrt{e x}}+\frac{\left (4 \left (b^2 c^2+a d (10 b c+a d)\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c+\frac{d x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{5 \sqrt{c} \sqrt{d} e^4}-\frac{\left (4 \left (b^2 c^2+a d (10 b c+a d)\right )\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{d} x^2}{\sqrt{c} e}}{\sqrt{c+\frac{d x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{5 \sqrt{c} \sqrt{d} e^4}\\ &=\frac{2 \left (b^2 c^2+a d (10 b c+a d)\right ) (e x)^{3/2} \sqrt{c+d x^2}}{5 c^2 e^5}+\frac{4 \left (b^2 c^2+a d (10 b c+a d)\right ) \sqrt{e x} \sqrt{c+d x^2}}{5 c \sqrt{d} e^4 \left (\sqrt{c}+\sqrt{d} x\right )}-\frac{2 a^2 \left (c+d x^2\right )^{3/2}}{5 c e (e x)^{5/2}}-\frac{2 a (10 b c+a d) \left (c+d x^2\right )^{3/2}}{5 c^2 e^3 \sqrt{e x}}-\frac{4 \left (b^2 c^2+a d (10 b c+a d)\right ) \left (\sqrt{c}+\sqrt{d} x\right ) \sqrt{\frac{c+d x^2}{\left (\sqrt{c}+\sqrt{d} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )|\frac{1}{2}\right )}{5 c^{3/4} d^{3/4} e^{7/2} \sqrt{c+d x^2}}+\frac{2 \left (b^2 c^2+a d (10 b c+a d)\right ) \left (\sqrt{c}+\sqrt{d} x\right ) \sqrt{\frac{c+d x^2}{\left (\sqrt{c}+\sqrt{d} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{d} \sqrt{e x}}{\sqrt [4]{c} \sqrt{e}}\right )|\frac{1}{2}\right )}{5 c^{3/4} d^{3/4} e^{7/2} \sqrt{c+d x^2}}\\ \end{align*}

Mathematica [C]  time = 0.126577, size = 125, normalized size = 0.3 \[ \frac{x \left (4 x^4 \sqrt{\frac{c}{d x^2}+1} \left (a^2 d^2+10 a b c d+b^2 c^2\right ) \, _2F_1\left (-\frac{1}{4},\frac{1}{2};\frac{3}{4};-\frac{c}{d x^2}\right )-2 \left (c+d x^2\right ) \left (a^2 \left (c+2 d x^2\right )+10 a b c x^2-b^2 c x^4\right )\right )}{5 c (e x)^{7/2} \sqrt{c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x^2)^2*Sqrt[c + d*x^2])/(e*x)^(7/2),x]

[Out]

(x*(-2*(c + d*x^2)*(10*a*b*c*x^2 - b^2*c*x^4 + a^2*(c + 2*d*x^2)) + 4*(b^2*c^2 + 10*a*b*c*d + a^2*d^2)*Sqrt[1
+ c/(d*x^2)]*x^4*Hypergeometric2F1[-1/4, 1/2, 3/4, -(c/(d*x^2))]))/(5*c*(e*x)^(7/2)*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.033, size = 648, normalized size = 1.5 \begin{align*}{\frac{2}{5\,d{x}^{2}{e}^{3}c} \left ( 2\,\sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{2}\sqrt{{\frac{-dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{-{\frac{dx}{\sqrt{-cd}}}}{\it EllipticE} \left ( \sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}},1/2\,\sqrt{2} \right ){x}^{2}{a}^{2}c{d}^{2}+20\,\sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{2}\sqrt{{\frac{-dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{-{\frac{dx}{\sqrt{-cd}}}}{\it EllipticE} \left ( \sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}},1/2\,\sqrt{2} \right ){x}^{2}ab{c}^{2}d+2\,\sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{2}\sqrt{{\frac{-dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{-{\frac{dx}{\sqrt{-cd}}}}{\it EllipticE} \left ( \sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}},1/2\,\sqrt{2} \right ){x}^{2}{b}^{2}{c}^{3}-\sqrt{{ \left ( dx+\sqrt{-cd} \right ){\frac{1}{\sqrt{-cd}}}}}\sqrt{2}\sqrt{{ \left ( -dx+\sqrt{-cd} \right ){\frac{1}{\sqrt{-cd}}}}}\sqrt{-{dx{\frac{1}{\sqrt{-cd}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( dx+\sqrt{-cd} \right ){\frac{1}{\sqrt{-cd}}}}},{\frac{\sqrt{2}}{2}} \right ){x}^{2}{a}^{2}c{d}^{2}-10\,\sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{2}\sqrt{{\frac{-dx+\sqrt{-cd}}{\sqrt{-cd}}}}\sqrt{-{\frac{dx}{\sqrt{-cd}}}}{\it EllipticF} \left ( \sqrt{{\frac{dx+\sqrt{-cd}}{\sqrt{-cd}}}},1/2\,\sqrt{2} \right ){x}^{2}ab{c}^{2}d-\sqrt{{ \left ( dx+\sqrt{-cd} \right ){\frac{1}{\sqrt{-cd}}}}}\sqrt{2}\sqrt{{ \left ( -dx+\sqrt{-cd} \right ){\frac{1}{\sqrt{-cd}}}}}\sqrt{-{dx{\frac{1}{\sqrt{-cd}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( dx+\sqrt{-cd} \right ){\frac{1}{\sqrt{-cd}}}}},{\frac{\sqrt{2}}{2}} \right ){x}^{2}{b}^{2}{c}^{3}+{x}^{6}{b}^{2}c{d}^{2}-2\,{x}^{4}{a}^{2}{d}^{3}-10\,{x}^{4}abc{d}^{2}+{x}^{4}{b}^{2}{c}^{2}d-3\,{x}^{2}{a}^{2}c{d}^{2}-10\,{x}^{2}ab{c}^{2}d-{a}^{2}{c}^{2}d \right ){\frac{1}{\sqrt{d{x}^{2}+c}}}{\frac{1}{\sqrt{ex}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^2*(d*x^2+c)^(1/2)/(e*x)^(7/2),x)

[Out]

2/5/x^2*(2*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)
^(1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*x^2*a^2*c*d^2+20*((d*x+(-c*d)^(
1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE
(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*x^2*a*b*c^2*d+2*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*
2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticE(((d*x+(-c*d)^(1/2))/(-c*d
)^(1/2))^(1/2),1/2*2^(1/2))*x^2*b^2*c^3-((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(
-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*x^
2*a^2*c*d^2-10*((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-
c*d)^(1/2)*d)^(1/2)*EllipticF(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*x^2*a*b*c^2*d-((d*x+(-c*d)^
(1/2))/(-c*d)^(1/2))^(1/2)*2^(1/2)*((-d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2)*(-x/(-c*d)^(1/2)*d)^(1/2)*Elliptic
F(((d*x+(-c*d)^(1/2))/(-c*d)^(1/2))^(1/2),1/2*2^(1/2))*x^2*b^2*c^3+x^6*b^2*c*d^2-2*x^4*a^2*d^3-10*x^4*a*b*c*d^
2+x^4*b^2*c^2*d-3*x^2*a^2*c*d^2-10*x^2*a*b*c^2*d-a^2*c^2*d)/(d*x^2+c)^(1/2)/d/e^3/(e*x)^(1/2)/c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{2} \sqrt{d x^{2} + c}}{\left (e x\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*(d*x^2+c)^(1/2)/(e*x)^(7/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^2*sqrt(d*x^2 + c)/(e*x)^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b^{2} x^{4} + 2 \, a b x^{2} + a^{2}\right )} \sqrt{d x^{2} + c} \sqrt{e x}}{e^{4} x^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*(d*x^2+c)^(1/2)/(e*x)^(7/2),x, algorithm="fricas")

[Out]

integral((b^2*x^4 + 2*a*b*x^2 + a^2)*sqrt(d*x^2 + c)*sqrt(e*x)/(e^4*x^4), x)

________________________________________________________________________________________

Sympy [C]  time = 147.089, size = 160, normalized size = 0.38 \begin{align*} \frac{a^{2} \sqrt{c} \Gamma \left (- \frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{5}{4}, - \frac{1}{2} \\ - \frac{1}{4} \end{matrix}\middle |{\frac{d x^{2} e^{i \pi }}{c}} \right )}}{2 e^{\frac{7}{2}} x^{\frac{5}{2}} \Gamma \left (- \frac{1}{4}\right )} + \frac{a b \sqrt{c} \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{d x^{2} e^{i \pi }}{c}} \right )}}{e^{\frac{7}{2}} \sqrt{x} \Gamma \left (\frac{3}{4}\right )} + \frac{b^{2} \sqrt{c} x^{\frac{3}{2}} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{d x^{2} e^{i \pi }}{c}} \right )}}{2 e^{\frac{7}{2}} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**2*(d*x**2+c)**(1/2)/(e*x)**(7/2),x)

[Out]

a**2*sqrt(c)*gamma(-5/4)*hyper((-5/4, -1/2), (-1/4,), d*x**2*exp_polar(I*pi)/c)/(2*e**(7/2)*x**(5/2)*gamma(-1/
4)) + a*b*sqrt(c)*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), d*x**2*exp_polar(I*pi)/c)/(e**(7/2)*sqrt(x)*gamma(3/
4)) + b**2*sqrt(c)*x**(3/2)*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), d*x**2*exp_polar(I*pi)/c)/(2*e**(7/2)*gamma(
7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{2} \sqrt{d x^{2} + c}}{\left (e x\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^2*(d*x^2+c)^(1/2)/(e*x)^(7/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^2*sqrt(d*x^2 + c)/(e*x)^(7/2), x)